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1. INTRODUCTION 

This paper gives an example of the application of matrix theory to 

a problem in universal algebra. It is motivated by some work of Trevor 

Evans [l] and D. E. Knuth (private communication and [2]). 

To describe the most general algebra in which we are interested, we 

shall use prefix, bracket-free, notation. For readers unfamiliar with 

prefix bracket-free notation the following remarks will help clarify the 

idea. Traditionally, binary operators such as +, ., etc. are in what is 

now called “infix” notation, e.g., a - b, a + b have the operators appear 

between the elements. In prefix notation an operator would appear to the 

left of the elements on which it operates. When all operators appear on 

the left it is unnecessary to use brackets provided only we know the 

degree of each operator (i.e., whether it is unary, binary, ternary, etc.). 

For example, if we write flab instead of a. b and fiab instead of a + b, 

the associative law a(bc) = (ab)c becomes flaflbc = flfiabc, while the 

distributive law a(b t_ c) = ab + ac becomes f,af,bc = fiflabflac. 

We define an algebra A as follows: A = (S, fl, fz, . . . , f+,), where 

S is a finite set and fl, fi, . . . , f,_l are binary operators on S (here we use 

prefix bracket-free notation, e.g., fix?) and satisfying the following (n - 1)2 

identities, 

f;fjabfjbc = A, + 3 I ;,i=1,2 )..., C-1, (1.1) 

* Dedicated to Professor A. M. Ostrowski on his 75th birthday. 
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where 
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It can be shown that 

(1) the cardinalityr of S :A /Y \vhrrr k ma!. be an arbitrary positi1.e 

integer; 

(2) the set (/,axix E S} has cardinality k; 

(3) each operator has the same idempotents and the number of such 

idempotents is K (here b is an idempotent of f, if /,bb = b). 

These results can bc proved by using standard results on eigenvalues 

of a certain matrix. The first two of them can easily be obtained b!. 

using simple algebraic arguments. However, the author knows of no wa>r 

in which to obtain the third result without the use of matrix theory. In 

fact, if we do not insist on the finiteness of S, and instead examine the 

free algebra with the given identities, we can show that such a system 

has no idempotents. A proof of this fact will be sketched at the end. 

There is no apparent way, other than by the intervention of matrices, 

in which the finiteness of S can be exploited to yield the idempottnts. 

2. MOTIVATIOS 

Trevor Evans was interested in universal algebras having a spectrum 

{l”, 2’“, 3”, 4”, . . .}. (Th e s ec rum p t of a universal algebra is the set of 

integers (n,, n,, . . , 12,, . . .} for which there are models in which S contains 

12, elements, i = 1, 2, . . .) .i possible way of constructing such an algebra 

is the following. Let M be a set of K elements and let S be the Cartesian 

product of n copies of M. Evans and his students then defined a single 

operator x on S by means of the definition 

(q, up,. . ., aIt) x (b,, b,, . . ., b,,) = (a!,, b,, b,, . . ., b,,~ ,I. 

By finding the correct equational identities they were able to show that 

the only models were precisely this multiplication of n-tuples which solves 
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We now show that the converse holds, namely, that if A = (S, . *) 

satisfies (3.1), (3.2), (3.3), (3.4) then we can construct a directed graph 

with the vertices being the elements of the set S, and such that there is 

a unique directed path of length 3 between any two vertices of S. 

In fact, if x, y ES introduce an edge from x to y (x -y) iff there 

is an element z E S such that y = .z. z. 

With this definition we now prove the following lemmas. 

LEMMA 1. x*k-+x*k. 

Proof. Consider the expression 

{(u * x) * (x * k)} * {(x * k) * b} 

This can be reduced by (3.3) and by (3.4). Equating these reductions we 

obtain 

(X. k) * {(x * k) * b) = x * k. (3.5) 

Hence x * k + x * h. 

LEMMA 2. x * k + k. 

Proof. {(~.k). (k.a)}.{(k*a)-b} = (x * k)+{(k-a)-6}by(3.1). Also 

{(x * k) - (k * u)} - {(K * a) * b} = (x * k) * (k * a) = k by (3.1) and (3.2). Hence 

(x * k) . {(k * a) * b} = k. (3.6) 

Hence (X * k) - k 

LEMMA 3. I/ ;J = .Y. k there exists an element 1 such that s = 1 * r. 

Proof. ((u * (d * x)} * ((d * x) * (x * h)} = {u * (d * x)} * (~0 k) Iq 
(3.4). Again {u * (d * x)} * ((d * x) * (X * k)} = (d * x) * (x * k) = .x. Hence 

{u * (d * X)} * (x * k) = x. (3.7) 

Putting 1 = a * (d * x) we have (I * y) = .Y. 

LEMMA 4. a. [((u . b) . c> . d] = a. b. 
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Proof. Reduce the expression 

{(x. a) * (a. b)) . {[(a * b) * c] * d} 

in two ways by the use of (3.2) and by the use of (3.6), obtaining 

a * [{(a * b) * c} . d] = a. b. 

COROLLARY. Using a dual argument we obtain 

[a * {b * (c * d)}] * d = c * d. (3.9) 

THEOREM. Given a, b any two elements in S, there is exactly one 

directed path of length 3 from a to b. 

Proof. By definition and by Lemmas 1 and 2 a + a. b -+ a * b --+ b. 

Hence there is at least one path. Suppose that there were a second path 

a-,l-+f-+b. Herel==a*x,f=(a*x)*y,andb=((a*x)*y}*z. Hence 

a - b = a * [{(a * X) * y} * z] = a. x by (3.8). Hence 1 = a - b. Dually, f = a * b. 

Having established the correspondence between the algebraic systems 

satisfying (3.1), (3.2), (3.3), (3.4) and directed graphs with exactly one 

path of length 3 between any two of its vertices we are able to use matrix 

theory to obtain important information about our algebraic system. 

Let A = (S, * *> together with axioms (3.1), (3.2), (3.3), (3.4) and 

let G be the corresponding graph whose vertices are the elements of S 

and let B be the adjacency matrix of this graph. Here, B is a matrix 

whose rows and columns are indexed by the elements of S and whose 

entries are exclusively 0 and 1, the entry in the xth row and yth column 

being 1, iff x + y. Then B3 = J where J is the matrix all of whose 

entries are 1. Let S contain m elements. Then B and J are square matrices 

of order m. The matrix J has eigenvalues m with multiplicity 1, and 0 

with multiplicity m - 1. Now from BJ = JB(= B4) it follows that 

each row sum and each column sum of B has the same value. Let each 

row and each column of B contain k 1’s. Then B has eigenvalues 

k, 0, 0, 0, 0, . . . , 0. Hence k = m’/3. This implies that S has k3 elements. 

It also implies that the sets 

R(a) = {a . XIX E S} 

all have cardinality k. 

and R*(a) = {y * sly E S} 
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Furthermore, tr B = K since it is the sum of the characteristic roots. 

This means that R has exactly k l’s along its main diagonal. A place 

along the main diagonal of 23 where an entry 1 occurs corresponds to an 

element b E S such that b = b. x = y * b for some x and J. 

We now show that b = b. x for some x iff b = b. b. It is only necessar! 

toprove b = b. ximplies b = b* b. From (3X), b. x = b- [{(be x) * XX}. x1, 

from which it follows b = b. ((b * x) . x} = b * (b . x) = b. b. It is also 

trivial that b = b * b iff b = b * b. This follows from (3.2) and (3.3) with 

a and c both replaced by b. Hence the system .4 = (S, *, *) has exactl!. 

Is idempotents, the same elements being idempotent under both operations. 

It is clear that this type of argument could be extended in several 

ways. \\‘e could use each of the three concepts, graph, algebraic system, 

adjacency matrix to obtain information relevant to the other two. In 

a private communication D. E. Knuth has shown the author several 

results concerning the matrix equation H” == .J by exploiting similar 

ideas. 

-4. THE WORD PROBLEM 

If we remove the finiteness condition on S, the resultant free algebra 

has a solvable word problem. This word problem has been solved for the 

author by machine computation by D. E. Knuth using the method 

described in [2]. The interest in the solution of the word problem is 

twofold. First, it is relatively complicated in form and hence illustrates 

the usefulness of a machine solution. Second, it yields a trivial proof of 

the fact that a free algebra with our given identities has no idempotents 

and, as a result, shows the value of the matrix formulation for the finite 

case which yields the existence and the number of the idempotents. 

\Ve sketch the idea of the proof here. First, a number of identities 

are established. Second, each of these identities will be considered as 

one-way replacements. For instance, the identity (a * b) * (b. c) = a * b 

will be written as (a * b) * (b * c) --f a * 6. A replacement in a word using 

this identity will mean that if a word has a subword of the form (a * 6) * (b - c) 

then this subword will be replaced by a * b. We now list a set of 30 

replacements. 

(a * b) * (b . c) 4 a * b (c * b) * (b * a) --, b * a 

(a * b) * (b-c) + b (c * b) . (b * a) -h 

Linear Algebra altd Its Applicatlovs 1, 471-418 (1988) 
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a. ((a * b) . c) + a . b 

a * ((a * b) * c) +a * b 

(c * (b - a)) * a 4 b * a 

(c * (b - a)) . a + be a 

a. ((a. b) * c) -+a. b (c - (b * a)) * a + b * a 

a * ((a - b) * c) + (a. b) . c 

(a * b) . ((b . c) * d) + b 

(a * b) * ((be c) . d) + b. c 

(u.(b.c)).(b*c) +u*(b.c) 

(a - (b . c)) * (b * c) --, b - c 

(c . (b * a)) . a + c * (b * a) 

(d * (c * b)) * (b . a) + b 

(d * (c * b)) - (b * a) ---f c * b 

(c.b)*((c*b)*u)-t(c*b).u 

(c.b).((c*b)*u) -+c*b 

a. (((a - b) - c) . d) + a. b (d * (c * (b * a))) * a + b * a 

a * (((a. b) - c) - d) + (a. b) - c (d*(c*(b*u))).u+c*(b*u) 

(u+b).(((u*b).c).d)+u*b (d*(c*(b.u)))*(b*u) +b.u 

(a. b) * (((a * b) . c) . d) --+ (a * b) - c (d * (c * (b - a))) - (b * a) + c * (b - a) 

(a * (b . c)) - ((b * c) * d) + b - c (d * (c . b)) * ((c * 6) - a) -+ c * b 

We shall say that a word W is irreducible if it contains no subword 

of any of the 30 forms which appear on the left-hand side of these replace- 

ments. Otherwise we say that W is reducible. If a word W is reducible 

we can form a sequence W - W, + W, + * * * --f W, where at each stage 

a subword having the form of the left side of one of our 30 replacements 

is replaced by the corresponding word on the right side. It is clear that 

after finitely many steps the word W, is irreducible, since each replacement 

reduces the length of a word. Now the following properties can be estab- 

lished (we omit the proof but the reader can get the idea by reading [Z]). 

Two irreducible words are equal if and only if they are identical. Hence, 

since any word can be transformed to an irreducible word, the word 

problem is solved. 

With our solution of the word problem it is now easy to show that 

the free algebra on any number of generators satisfying identities (3.1), 

(3.2), (3.3), (3.4) has no idempotents. For if p is such an idempotent, 

we may assume without loss of generality that p is irreducible. Now 
p * /I is irreducible unless p = z~i - zq or p = ZEJ~ * wr. This can easily 
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be checked by examination of the left side of each of the 30 replacements. 

We consider only the case where 11 = war . w1 with ~1~. w1 irreducible (the 

argument for the case /I = 10~ * wr is similar). Hence p * /i = (rq. w;) . 

(WI. WI) = w, * WI. Now zcl * wl is irreducible unless UY~ 1 wa. w2 or 

wl = w2 * w2. Rut in either of these cases it follows that wr * w1 is irrcduc- 

ible, a contradiction. Hence if ,!I. /i = jj we obtain ~1~. q = iLlI * ztjl 

with both sides irreducible. This contradicts the fact that two distinct 

irreducible words are unequal. Hence, there are no idempotents. 
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